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Abstract— Microwave devices with the Rollet parameter (k)
less than one can always be made stable by resistive loading.
In cases where noise figure or output power is at a premium,
the performance of an amplifier can often be enhanced by
using a design where & is less than unity thereby avoiding
resistive loading. While a simultaneous conjugate match is impos-
sible for such conditionally stable designs, single-sided matching
can be achieved. Low-noise and power designs are examples
where single-sided matching considerations naturally occur. With
single-sided matching and 0 < % < 1, a design method is
presented that results in device impedances on both the matched
and unmatched sides that are always inside the Unit Smith Chart.
This condition is referred to as jointly (input/output) stable. Gains
resulting from jointly stable terminating impedances are shown
to be bounded, the upper bound being given by 2 -k maximum
stable gain. The design on an output-matched, conditionally
stable amplifier is illustrated.

I. INTRODUCTION

OR high-performance amplifier applications, it is often

desirable not to stabilize potentially unstable devices if
the source and load impedances are well controlled. A design
technique that permits the use of k£ less than one thereby
avoids resistive loading (otherwise used to make k greater than
one) and helps achieve better noise figure and output power.
Unfortunately, the design of conditionally stable amplifiers
may not be a straight forward process as illustrated in the
MESFET example shown in Fig. 1.

Here the designer selected a stable source reflection coeffi-
cient I's (based on noise or other considerations), designed an
appropriate input matching network (IMN) to transform 50 {2
into I'g, and now wishes the output to be matched. With the
IMN connected to the FET gate, an output reflection coefficient
T'our is observed looking into the drain. An output matching
network (OMN) now needs to be designed to transform 50
Q to T'§yp so that the drain will see a conjugately matched
load. Unfortunately, as seen in the figure, this can result in
a I'y, located on the unstable side of the load stability circle.
At this point, the designer has several choices: 1) continue
the design of the OMN accepting the location of I'Gyy, 2)
design an OMN that results in a I'y, that is near ['Gyp but
on the stable side of the load stability circle, and accept an
unknown degraded match at the output of the circuit [1], or 3)
restart the design changing I's hoping that the new resulting
&y will fall in the stable region of the load plane [2]. In
choice 1), the output is conjugately matched, but because of
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Fig. 1. Tllustration of the stability problem in designing a conditionally stable
amplifier. Tick marks designate stableside of stability circles.

the location of I'y, the input is unstable, i.e. referring to (1) and
3), IT'in(Tur(Ts))| > 1. In this case the input impedance
will have a negative real part and with the “proper” source
termination could support oscillations. In choices 2) and 3),
the design process becomes uncertain and requires “trial and
error” iterations to complete the design.

The above example illustrates that a circuit can be output
stable, |Tour| < 1, but input unstable, [I'nv| > 1, conditions
manifested by examining the source and load stability circles,
respectively. Output matched circuits for which |[Tour(I's)| <
1 and |Pin(I'gyr(Ts))| < 1 are said to be jointly stable. A
non-iterative process to design a jointly stable output matched
circuit would be possible if the stable region in the load plane
(Fig. 1—upper right) were mapped onto the I's-plane. This
mapped region in the I'g-plane will be either a disk (region
inside of a circle) or a disk complement (region outside of
a circle) since the reflection coefficients are related by linear
fractional (or bilinear) transformations [3], i.e., (1)-(4) [1]-[4].
An exact knowledge of this region in the I'g-plane would
permit a designer to select source impedances with an a priori
knowledge that the matched load will be located on the stable
side of the load stability circle

1
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where
A = 811829 — 512521. )

1I. BACKGROUND

To facilitate the theoretical development, the following
algebraic combinations of S-parameters are defined [1]

Bi=Di1+E; (6)

Cy = 811 — AS3, N

Dy = |Su)? — |A)? (8)

Ep=1— |8/ &)
Ei—-D;

—_ = 10

2|S812521| (10

Additionally, the following easily verified relationship turns
out to be useful

|C1|* = |S12891]* + D1 Ex. (11)

The conventional stable region [2] in the source plane, whose
boundary is the source stability circle, is here referred to as
the output stable region in the source plane since it defines
the T's values that result in [Coyr(T's)| < 1. Using (3), this
results in region which is either a disk or disk complement.
In either case the boundary is the circle with radius, rg, and
center, C'g, given by

S125
rg = 212e2 121 (12a)
Cy
= —. 2
CS ) (1 b)

If Dy < 0[3] then the stable region is the “disk,” [['s — Cg| <
rg, whereas, if D1 > O then the stable region is the “disk
complement,” |I's — C's| > rg. Since D; is a real number
the angular direction of the center, Cg, is determined only
by the angle of the complex number C}. To emphasize this
dependency the center of the stability circle is represented as
the product of a scalar and a unit vector in the complex plane,
i.e., GS = Csés, where

oLl i

D, e
Fig. 2 illustrates the eight different topological relationships
that the conventional stability regions can have with the Unit
Smith Chart where Fig. 2(a) and 2(h) illustrates uncondition-
ally stable circuits, i.e., the USC is contained in the stable
region, while Fig. 2(d) and 2(e) illustrates absolutely unstable
circuits. This paper focuses on conditionally stable circuits
exemplified by Fig. 2(b) and 2(f), which will be shown in the
next section to be equivalent to |k < 1.

and ¢

(13)
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I'¢-plane
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@ (h)
Stability circle configurations. D1 > 0 for (a)—(d), and D; < 0 for

Fig. 2.
(e)~(h).

III. GEOMETRIC IMPLICATION OF [k| < 1

In this section it is shown that —1 < k£ < 1 occurs if and
only if the stability circle intersects the unit circle, i.e., when
the stability circle radius is strictly between the following two
limits:

HCsl—ll <rg < ]CSI+1. (14)

The left inequality in (14) implies that
1+ |Cslz — T% < 2]05[
and using (12a), (12b), and (11) one can obtain

D+ E,

D; < 2[Csl,

5)
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Similarly, the right side of (14) implies

D1+ E

-2
|CS| < Dl

(16)
and by virtue of (15) and (16)

D)+ FE
’g < 2|Cq).

D,

Since both sides are positive, this relationship can be squared
preserving the inequality. Using (12b) it follows that

(D1 + E1)? < 4|Cy)%. (17)

Substituting for |C;|? using (11) and applying (10) results in
E, — D, >2
K = (—_ <1
2[S12521]
or k| < 1.

The above argument is reversible in that |k| < 1 implies
that either rs > ||Cs| — 1| or rs < |Cs| + 1 and therefore,
the stability circle intersects the unit circle.

IV. GAIN PROPERTIES FOR |k| < 1
(INVARIANT POINTS AND MONOTONICITY)

It is now shown that when |k| < 1 the stability circle and the
unit circle intersect in two distinct points. Using the approach
of Collins [4] these two points are shown to be common to all
the available gain circles and therefore called invariant points.
The geometric relationships between the stability circle, the
gain circle, and the unit circle can then be determined solely
by comparing the centers of the circles. This property will
become useful when the gain associated with input stable
region in the source plane is discussed in a later section. The
geometry together with the monotonic nature of the gain and
its singularity near a stability circle will be used in establishing
when the gain is constrained by an upper bound.

The source stability circle is found by squaring [Toyr| =
1 and substituting (3) to get

|1 — S11Ts|% = |Sa2 — AT'g|* = 0. (18)
Expansion and substitution of |I's| =1 into (18) results in (19),
an equation for the intersections of the source stability circle
and the unit circle
CiI's + CiTsg — B; =0. (19)
Multiplying this equation by I'g and utilizing the quadratic
formula gives two solutions

B, + /BZ —4]C1?

L
s = 204
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From (6), (10), and, (11)
B2 —4|C1)? = 4]S12521 2 (k2 - 1) (20)

which implies that |k| < 1 is equivalent to B? < 4 |C1|%. In
this case the complex number I‘fsE is appropriately written

_ Bi+j\/4Ci* — B

F:l:
S 204

€2y

The available power gain [5], G4, is defined in terms of

the normalized gain, g,, as
Ga = galSa1f? (22)

where

_ (1-ITs}?)

1= 8uls|? —|Sae ~ Al's|?
Contours of constant gain appear as circles [6] on the Smith
Chart with centers and radii defined by

9a (23)

Cga = CgaéS
(&Y
Cga = D1 L (24
Ga
and
1 — 2K|S12591 |90 + |S12521262] />
rga = [ 1512582190 + 512521 ga] ‘ 25)

1+gaD1

The centers of the constant gain circles and the center of the
stability circle all lie on a common ray drawn from the center
of the Smith Chart defined by the unit vector ¢g.

Circles of constant available gain, g,, are represented from
(23) as

2
|1 — S11Tg|* ~ |Sag — AL'g|? = (l—gl-w.
a

Substitution of |I'g| = 1, the unit circle, yields
I]. — 511F5|2 — |522 - AP5I2 =0

showing that the solution is independent of g,, and hence the
gain circle intersects the unit circle at the same point regardless
of the gain, and consequently are referred to as invariant
points. Also, this equation is the same as (18) implying that the
invariant points are identical to points where the stability circle
intersects the unit circle, i.e., F?. Because of the invariant
points, the geometric relationship of the source stability circle,
gain circles and the unit circle can be determined solely by
the center as shown in Fig. 3.

The behavior of the gain is now examined as one moves
a distance x along the direction és, i.e., letting I's = z¢s.
Substitution into (23) yields

1—22

. 2
Dyx? — Zlcll.'l; + I (26)

Ga (I) =
Differentiation of this expression yields

. 2101':1)2 - 2(D1+ Bz + 2|C4|
ST D At B
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0<gal<ga2<ga3 <+

I - plane

Fig. 3. Tllustration of invariant points I'S for a circuit where |k| < 1 and
Dy >0

Since the denominator is always positive the sign of the
derivative is controlled by the numerator. The function, g,,
is monotonic (always increasing or always decreasing) when
the numerator does not change sign as a function of z. This
is equivalent to saying that the discriminant of the numerator,
a quadratic, is negative, i.e.

A(Dy + E1)” —16|C12 < 0

which is the same as (17), and therefore, equivalent to |k| <
1. Consequently, the gain function is a monotonic function of
x whenever |k| < 1.

The gain function g, in (23) is singular (00) whenever I's
approaches a value on a stability curve since the denominator
vanishes in (18). The sign of the singularity is determined by
examine the numerator and denominator of (23). As long as
I's remains in the Unit Smith Chart the numerator is positive,
and as long as I'g is in the stable region the denominator is
positive. This positive monotonic nature of g, is illustrated in
Fig. 3 for Dy > 0. The gain is zero at the boundary of the
USC and approaches +oo as the stability circle is approached
on the stable side, i.e., the “tick mark” side.

V. INPUT STABLE REGION IN THE SOURCE PLANE

The input stable region in the source plane is determined by
IIn(I5ur(Ls))| < 1. Substitution of (3) and (1) results in

|Ey — CiT%| > |Cy — DiT%|. (27)
Squaring and expanding (27) results in
(IC1? = D})|T's|* + (D1 — E1)CiT's
+ (D1 — E1)CiTs > |C1]? — Ef (28)

which describes a disk or disk complement region in the I's-
plane depending on whether |C1]2 —~ D% < O or |Cy]? — D? >
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0, respectively. In either case the boundary of the region is
described by the equation

(IC1]? - D%)IFSF + (D1 — E1)CiI's

+ (D1 - B1)CiTs = |Gy - BY (29)
which is a circle with center
Cis = cisés
where
crs = 5—:#% (30a)
and with radius
T8 = ,Wﬁf‘[% . (30b)

The subscript “IS” signifies that the area of interest is the Input
stability region in the Source plane.

Noticing that (g is co-linear with the centers of the
available gain circles, Cys, (line determined by the unit vector
¢s) motivates an examination of whether the input stable circle
intersects the unit circle. Substitution of |I's| = 1 into (29)
results in (19) and shows that the input stable circle in the
source plane intersects the unit circle at exactly the invariant
points and hence the input stable boundary in the source plane
is an available gain circle [7].

The specific gain value equating to the input stable boundary
is denoted gi, signifying that it is the specific available gain
circle which determines the input stable region in the source
plane. The value of gi; can be found by equating (24) with
(30a) resulting in

2%
e = 18128
The denormalized gain equals
S
Gis=2-k- |22 =2. k- MSG
512

where MSG is the maximum stable gain of the device.

The g;s available gain circle determines the boundary for the
input stable region in the source plane, i.e. [Ty (Te))|
< 1. However, it remains to determine when and if g;
represents an upper bound for the available gain.

VI. MAXIMUM AVAILABLE GAIN (FOR PASSIVE
JOINTLY STABLE SOURCE IMPEDANCES)

In this section it is shown that when the source impedance is
required to be passive and jointly input/output stable then the
available gain has an upper bound referred to as the maximum
jointly stable available gain. This requires examining the
geometrical relationship of the g;s circle (input stable region
boundary in the source plane), the unit circle (|I's| =1), the
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TABLE I
COMBINATION OF STABILITY REGIONS IN THE I"g-PLANE FOR (k| < 1
Output Input Stable Implied Implied Does
Case Stable Region k Relationship  Fig Passive
Region (| Cllz - D‘Z) values  of centers # Jointly
(D) Stable
Region
Exist?
k>0 O<cy < 4 Yes
I Outside Outside
(>0) (>0)
k<0 C <0< 5 No
I Outside Inside k<0 O<cs <y 6 No
(>0) (<0)
m Inside Inside k>0 € <Cg <0 7 Yes
(<0) (<0)
k>0 ¢ <0<cy 8 Yes
v Inside Outside
(< 0) (> 0)
k<0 cy <20 9 No

source stability circle (output stable region boundary in the
source plane) and the resulting implication of the monotonic
and singular nature of the gain. The geometry of the circles
is determined by the centers since they all intersect at the
invariant points. The passive, output stable, and input stable
regions in the source plane are

Passive Source region [|[I's| < 1]

Output Stable region [|[TouT(Ts)| < 1]

D, > 0: stable region is outside the source stability circle

D, < 0: stable region is inside the source stability circle
Input Stable region [|[TIn{T6ur(Ts))| < 1]

|C1|2 — D? > 0: stable region is outside the gi, circle
|C1|? — D? < 0: stable region is inside the g, circle.

Combinations of the possible stable regions above results
in four cases to consider. Case I is analyzed in detail below,
while the remaining cases are summarized in Table 1.

Case I: Dy > 0 and |C4|> — D? > 0.

Substitution of (10) and (11) results in

10112 — D% = l512521|(|512521| + Zle) >0

which implies that

_|81252|

k
Y
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Fig. 4. Case I geometry (D1 > 0 and [C1|? — D? > 0) when 0 < k <
1 implies 0 < c¢1s < cs.

If k£ is positive then
G 1G]

0< ———=—
D; + LSléllel Dy

and from (13) and (30a)
0<ecg <cg

which shows the relationship of the scalar multipliers used
with the unit vector ég to determine the centers of the circles.
This is illustrated in Fig. 4 where the stable side of the source
stability circle is indicated by tick marks. The input stability
boundary (gis) in the source plane is illustrated as a dark circle
with the stable side designated by triangular tabs. The shaded
area shows the passive, jointly stable impedances in the source
plane (drawing conventions apply to all figures in this section).
Since D; > O the available gain function is increasing as
I's moves along the line defined by the vector és. From the
discussion connected with Fig. 3, the gain equals zero when
T'g is located at the boundary of the USC and goes to +o0 as it
approaches the stability circle on the tick mark side. Therefore,
in this case with k& > 0, the available gain for passive, jointly
stable source impedances is bounded by Gis.

When k = 0, the input stable boundary in the source plane
becomes the same as the unit circle as can be seen by taking
the limit as k approaches zero in (30a) and (30b). However,
the input stable region is outside the circle and therefore it is
impossible to have a passive source impedance which is also
jointly stable.

When k£ < 0 then 0 < cig < cg and no passive jointly
stable source impedances are possible as illustrated in Fig. 5.

After all possible topological combinations of passive and
jointly stable regions in the source plane have been similarly
examined (see Table I) and it is observed that when 0 < k <
1 then the jointly stable region overlaps with the USC. Source
impedances in the overlapping region result in an output whose
conjugate match is located on the stable side of the load
stability circle. The available gain value, G1s, represents an
upper bound for passive, jointly stable source impedances.
When —1 < k& < 0 no passive source impedance are possible
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Iy - plane

CIS

Fig. 5. Case I geometry (D1 > 0 and |C1]?> — D? > 0 ) when —1 < k <
0 implies ¢;g < 0 < cs.

I’y - plane

Fig. 6. Case II geometry (D; > 0 and [C1]? — D? < 0 ) implies
-1 <k <0and 0 < ¢cg < cs.

that are jointly stable in the source plane. Therefore, provided
that 0 < k& < 1 the maximum available gain for jointly stable
source impedances equals Gis = 2-k- MSG.

VII. MAXIMUM OPERATING GAIN (FOR
PASSIVE JOINTLY STABLE LLOAD IMPEDANCES)

The above development has concentrated on conditionally
stable circuits with the output conjugately matched and k| <
1. Similarly, a conditionally stable circuit can be designed with
the input conjugately matched. In this case the load impedance
determines whether the circuit is input stable

IFIN(FL)I <1
or output stable,
ITour(Tin(T'r)) < 1.

In this case analogous definitions and relationships for (6)
through (13) exist and can be used to establish that output
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I's

- plane

Fig. 7. Case III geometry (D1 < O and |C1|2 — D2 < 0) implies 0 < k& <
1and ¢s < ¢ < 0.

I's - plane

Fig. 8. Case IV geometry (D1 < O and [C1]? — D? > 0) when 0 < k <
1 implies cs < 0 < ¢5.

stable region in the load plane is bounded by an operating
gain circle with center Cor, = corér, where

CoL = ]
Dy + 151281
R &
C, — 0—2
and radius
roL |S12.521]

- 2k'D2 -+ |512521| )
The output stable region in the load plane is inside the circle
if |Cy|? — D2 < 0 if and outside if |C3|2 — D2 > 0. The value
of the normalized gain is

2%
gol = |S12521]
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I'; - plane

&

Fig. 9. Case IV geometry (D1 < Oand |Cy|2—D? > 0) when —1 < k <
0 implies cs < ¢is < 0.

with an denormalized gain equal to
GoL = gallS21* =2 - k- MSG.

It also follows that passive, jointly stable load impedances exist
if and only if 0 < k& < 1 and the operating gain is bounded
by GOL-

VIII. MAXIMUM SINGLE-SIDED MATCHED GAIN
(FOR PASSIVE JOINTLY STABLE IMPEDANCES)

Since the maximum available gain for passive, jointly
stable source impedances equals the maximum operating gain
for passive, jointly stable load impedances, a universal fig-
ure of merit can be defined and designated as Maximum
Single-Sided Matched Gain, Gysm, for conditionally stable
amplifier. And, for which

GuvsMm = Gis =GorL =2 -k - MSG.

In particular, Gysm > Guse if & > %

IX. DESIGN EXAMPLE

This section illustrates the use of the above principles in
the design of a conditionally stable 6 GHz amplifier using the
Mitsubishi MGF-4301A HEMT with a conjugately matched
output. The design is based on measured S-parameters for 37
devices biased at Vpg = 2 V, Ips = 20 mA and summarized
in Table II. Using the mean values from Table II one finds that
7{7 = 732, GMSG =172 dB, and GMSM = 18.9 dB.

The design begins by selecting a source stability margin
measured by an acceptable reduction of available gain. For
each device, an input matching point is selected to insure
that the available gain is 2 dB below its Guswm. This point
is determined for each transistor by selecting I's on the line
connecting the center of the Smith Chart and the gain circles
so that each I'g is at a maximum distance from their respective
MSM circles. The I'g for a desired available gain can be found
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TABLE 1I
STATISTICAL SUMMARY FOR S-PARAMETERS MEASUREMENT
oF 37 MrrsuBisHl MGF-4301A MESFET’s, AT 6 GHz

Average Standard Deviation
MGEF-
4301
A Real Imag Real Imag
Part Part Part Part
Su - 406 -554 016 017
Su 1.45 393 089 .098
Si 076 021 003 001
S, 092 - 409 021 008

Stability Circles

MSM Circles

s~ —.394+j.351(mean)+.02(std)+j.02(std)

/
GA=16.9dBl(mean)i.2dB(std)

Fig. 10. Source stability circles, MSM circles, and the average input match-
ing point for the 37 transistors at 6 GHz.

by inverting (26) using the negative root in the quadratic
formula
= |C1]ga — \/|C1|2gg —(gaD1 + 1)(gaB1 — 1)
(gaDl + 1)

and substituting into
I's=x-¢s

where g, from (22) now equates to the reduced gain for each
device.

The average of the 37 I's’s together with the source stability
circles, and the MSM circles, calculated using (12a), (12b),
(24), (25), (30a), and (30b) are shown in Fig. 10. A single IMN
matched to the average I's was designed using the HP-EEsof
commercial CAD system.

A set of output reflection coefficients is subsequently ob-
tained by connecting the same IMN to each of the transistors.
Averaging the conjugate of this set determines the matched
load reflection coefficient, see Fig. 11, and is used to design
the OMN.

With the IMN and OMN designed, transducer gain of the
amplifier can be simulated using the S-parameters of each
device. A plot of these transducer gains is shown over a
frequency range of 4-8 GHz in Fig. 12. The black band
resulting from multiple traces indicates the variation of gain
over the 37 samples. The average transducer gain at the 6 GHz
design frequency is 16.7 dB (mean) 0.2 (std).
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Stability Circles

[} =—.078+.617(mean)
+.034:§.009(std)

Fig. 11. Load stability circles and the average conjugately matched load for
the 37 transistors at 6 GHz.

Gain (dB)

24

0 t ; t : ' t ' t

4 4.5 5 5.5 6 6.5 7 7.5 8

Frequency (GHz)

Fig. 12. Simulated and measured (A) gain for an output matched condition-
ally stable amplifier using the Mitsubishi MGF-4301A transistors.

The above design was fabricated and transistors installed.
The measured gain of four output matched amplifiers are
shown in Fig. 12. The average gain of the four amplifiers
measured at 6 GHz is 15.9 dB.

The advantage of pursuing a conditionally stable design
technique is illustrated by comparison with the expected
performance of an unconditionally stable amplifier design
using the same transistor set. The expected MAG can be
estimated as MSG — 2.7 — .5 = 14.0 dB, where the 2.7 dB
reduction accounts for resistive loading to achieve k ~ 1.2
and the .5 dB reduction accounts for typical matching network
losses. A design & of 1.2 was assumed here to provide design
margin so that actual circuit £’s will be maintained greater
than one under worst-case component and process variations.
On the basis of similar design margins and circuit losses, the
6.7 dB gain of the conditionally stable design is 2.7 dB higher
than the 14-dB gain of the unconditionally stable design. Even
the measured gain of the conditionally stable amplifier design
(Fig. 12) is nearly 2 dB better than the design estimate of the
unconditionally stable amplifier. This improvement is achieved
without the side effects of resistive loading such as increased
noise figure.

The gain improvement was possible because some in-
stability risk was permitted to be part of the design. A
quantitative margin of safety is, therefore, important and must
be considered for a wide frequency range even in a narrow
band design. Plotting the circuit k and B; values as a function

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 7, JULY 1995

1.2
14—pt
0.8
0.6 4
B
0.4 / \
0.2 /’ \
VSWR=24:1 | VSWR=7.0:1
N I L
4 45 5 55 6 6.5 7 7.5 8
Frequency (GHz)
Fig. 13. Stability margin determined by g’ and p.

of frequency is not very satisfying since it does not directly
translate into VSWR restrictions on the source or load to insure
stable operation. However, the new source and load stability
parameter ' and p [3] which measures the encroachment of
the unstable area onto the USC does provide the necessary
source and load VSWR condition. Fig. 13 shows p’ and u
plotted for the four fabricated amplifiers over a frequency
range of 4-8 GHz. The stability margin is determined on the
source side by x/ and on the load side by u. The lowest values
determine the least margin of stability. For example at 5.5 GHz
@' =0.75 which equates to a VSWR of (1+.75)/(1-.75) = 7.0
meaning that the circuit remains stable even when connected
to a source having a high VSWR of 7.0:1. At 5.3 GHz u =
0.42 implies that stable operation is insured for a load whose
VSWR does not exceed 2.4:1.

The above techniques naturally lend themselves to modern,
commercially available CAD packages which easily incorpo-
rate user defined variables and equations and the relationships
can greatly accelerate optimization and provide valuable en-
gineering insight into the design.

X. CONCLUSION

A deterministic approach has been developed for design-
ing conditionally stable amplifiers whose input or output is
matched. A rigorous theoretical framework for this approach
has been established and two gain circles have been defined,
namely the Maximum Available Gain for passive, jointly stable
source impedances and the Maximum Operating Gain for
passive, jointly stable load impedances. Each circle serves as
a graphical design aid on the Smith Chart as the boundary
for suitable source or load regions under the proposed design
method. The boundary of both regions coincides with a
particular gain circle in their respective impedance plane and
the associated gain of each circle is found to be equal to
2 -k - MSG. This gain is designated as Gysyv (Maximum
Single-sided Matched Gain).
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