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Abstract— Microwave devices with the Rollet parameter (k)

less than one can always be made stable by resistive loading,

In cases where noise figure or output power is at a premium,

the performance of an amplifier can often be enhanced by

using a design where k is less than unity thereby avoiding
resistive loading. While a simultaneous conjugate match is impos-

sible for such conditionally stable designs, single-sided matching

can be achieved. Low-noise and power designs are examples

where single-sided matching considerations naturally occur. With

single-sided matching and O < k < 1, a design method is
presented that results in device impedances on both the matched

and unmatched sides that are always inside the Unit Smith Chart.

This condition is referred to as jointly (input/output) stable. Gains

resulting from jointly stable terminating impedances are shown

to be bounded, the upper bound beiug given by 2 k. maximum

stable gain. The design on an output-matched, conditionally

stable amplifier is illustrated.

I. INTRODUCTION

F OR high-performance amplifier applications, it is often

desirable not to stabilize potentially unstable devices if

the source and load impedances are well controlled. A design

technique that pertnits the use of k less than one thereby

avoids resistive loading (otherwise used to make k greater than

one) and helps achieve better noise figure and output power.

Unfortunately, the design of conditionally stable amplifiers

may not be a straight forward process as illustrated in the

MESFET example shown in Fig. 1.

Here the designer selected a stable source reflection coeffi-

cient I’s (based on noise or other considerations), designed an

appropriate input matching network (IMN) to transform 50 Q

into 17S, and now wishes the output to be matched. With the

IMN connected to the FET gate, an output reflection coefficient

rouT is observed looking into the drain. An output matching

network (OMN) now needs to be designed to transform 50

Q to r~u~ so that the drain will see a conjugately matched

load. Unfortunately, as seen in the figure, this can result in

a r~ located on the unstable side of the load stability circle.

At this point, the designer has several choices: 1) continue

the design of the OMN accepting the 10CatiOII of ‘3uT! 2)

design an OMN that results in a 17~ that is near 17~uT but

on the stable side of the load stability circle, and accept an

unknown degraded match at the output of the circuit [1], or 3)

restart the design changing I’s hoping that the new resulting

r~u~ will fall in the stable region of the load plane [2]. In
choice 1), the output is conjugately matched, but because of
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Fig. 1. Illustration of the stability problem in designing a conditionally stable

amplifier. Tick marks designate stableside of stability circles.

the location of 17~ the input is unstable, i.e. referring to (1) and

(3), \rIN(%T(rS)) I >1. h thiS CaSe the h@ @XXkiJICe

will have a negative real part and with the “proper” source

termination could support oscillations. In choices 2) and 3),

the design process becomes uncertain and requires “trial and

error” iterations to complete the design.

The above example illustrates that a circuit can be output

stable, \rouT I < 1, but input ~stable, lrlN I > 1, conditions

manifested by examining the source and load stability circles,

respectively. Output matched circuits for which lrOUT(rS) ] <

1 and lrIN (r&JT(rS)) I < 1 are said to be jointly stable. A
non-iterative process to design a jointly stable output matched

circuit would be possible if the stable region in the load plane

(Fig. l—upper right) were mapped onto the r~-plane. This

mapped region in the 17S-plane will be either a disk (region

inside of a circle) or a disk complement (region outside of

a circle) since the reflection coefficients are related by linear

fractional (or bilinear) transformations [3], i.e., (l)-(4) [1]-[4].

An exact knowledge of this region in the I’s-plane would

pertnit a designer to select source impedances with an a priori

knowledge that the matched load will be located on the stable

side of the load stability circle

(1)
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where

S11 – I’IN
r~ = f-l(rIi.i) = ~ – s22rIN

S22 – ms ‘2) E!El

rOuT = g(rs) = ~ _ sllr~ (3)

L5’M– rouT
o

rs = g-l(rouT) = * _ SllrouT (4)

m

A = S11S22– S12S21.

II. BACKGROUND

To facilitate the theoretical development,

(5)

the following
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(a)

algebraic combinations of S-parameters are defined [1]

u
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,..

B1=DI+E1 (6)
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,. .. ,
c1 = Sll – AS;2 (7)

,, ..”r..,.,.....’

DI = Islly – ply (8)

El = 1 – /S2212 (9) (b)

~= E1– D1

21s12s7?11”
(lo)

Q
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Additionally, the following easily verified relationship turns
,.: .,

,.. ... .
..- ~,,.. . .........

out to be useful
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; ..-”’
......”” ...’.........

Icly = 1s12s2,12+ DIE,.
,..

(11)

The conventional stable region [2] in the source plane, whose
(c)

boundary is the source stability circle, is here referred to as

the output stable region in the source plane since it defines

the rs values that result in l?i’ou@S ) I < 1. Using (3), this

results in region which is either a disk or disk complement.

Q

...
In either case the boundary is the circle with radius, rs, and

.........
...$. ....

,,,
center, C,S, given by

‘..............................,..
,.,,,... .

15’12s21

,..
....... . ...

rs = —
D1

(12a)

Cs = ~. (l’b) (d)

If DI <0 [3] then the stable region is the “disk,” lrs – Cs 1’<

rs, whereas, if D1 > 0 then the stable region is the “disk

complement,” lrs – CS / > rs. Since D1 is a real number

the angular direction of the center, CS, is determined only

by the angle of the complex number CT. To emphasize this

dependency the center of the stability circle is represented as

the product of a scalar and a unit vector in the complex plane,

i.e., Cs = c,s2s., where

Icll
Cs= D1 and ‘s= g

(13)

Fig. 2 illustrates the eight different topological relationships

that the conventional stability regions can have with the Unit

Smith Chart where Fig. 2(a) and 2(h) illustrates uncondition-

ally stable circuits, i.e., the USC is contained in the stable

region, while Fig. 2(d) and 2(e) illustrates absolutely unstable

circuits. This paper focuses on conditionally stable circuits

exemplified by Fig. 2(b) and 2(f,), which will be shown in the

next section to be equivalent to Ikl < 1.
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Fig. 2. Stability circle configurations. D1 >0 for (a)–(d), and D1 <0 for
(e)-(h).

III. GEOMETRIC IMPLICATION OF lkl < I

In this section it is shown that – 1 < k < 1 occurs if and

only if the stability circle intersects the unit circle, i.e., when
the stability circle radius is strictly between the following two

limits:

llc~]-11 <7-s < /csl+l. (14)

The left inequality in (14) implies that

and using (12a), ( 12b), and (11) one can obtain

DI + El

D1
< 21C,91. (15)
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Similarly, the right side of (14) implies

D1 + El
–2[C,9 < ~1

and by virtue of (15) and (16)

(16)

Since both sides are positive, this relationship can be squared

preserving the inequality. Using (12b) it follows that

(Dl + El)’ < 4[C,[2. (17)

Substituting for ICI 12using (11) and applying (10) results in

‘2=($ii:l)’<’
0?-Ikl <1.

The above argument is reversible in that Ik I < 1 implies

that either r’s > IICS I – 1I or r,s < IC,SI + 1 and therefore,

the stability circle intersects the unit circle.

IV. GAIN PROPERTIESFOR lkl < I

(INVARIANT POINTS AND MONOTONICITY)

It is now shown that when Ikl <1 the stability circle and the

unit circle intersect in two distinct points. Using the approach

of Collins [4] these two points are shown to be common to all

the available gain circles and therefore called invariant points.

The geometric relationships between the stability circle, the

gain circle, and the unit circle can then be determined solely

by comparing the centers of the circles. This property will

become useful when the gain associated with input stable

region in the source plane is discussed in a later section. The

geomet~ together with the monotonic nature of the gain and

its singularity near a stability circle will be used in establishing

when the gain is constrained by an upper bound.

The source stability circle is found by squaring lrouT I =

1 and substituting (3) to get

II - sllrS12 - [s22 - Ar~12 = o. (18)

Expansion and substitution of II’S I =1 into (18) results in (19),

an equation for the intersections of the source stability circle

and the unit circle

elr~ + c;r~ – 131 = o.

Multiplying this equation by I’S and utilizing

formula gives two solutions

(19)

the quadratic

From (6), (10), and, (11)

B; – 4[c112 = 41SI’S’112(k2 – 1) (20)

which implies that Ik I < 1 is equivalent to B; <4 ICl 12. In

this case the complex number 17~ is appropriately written

(21)

The available power gain [5], GA, is defined in terms of

the normalized gain, g., as

GA = g#z112 (22)

where

(1 - lr~l’)

‘a = 11- sllrsl’ - 1s22 - Arslz”
(23)

Contours of constant gain appear as circles [6] on the Smith

Chart with centers and radii defined by

Cga = Cgats

(24)

and

[1 - 2kp,’s’,lga + p,’s’,12g:] 1/2
‘ga =

1 + gaD1
(25)

The centers of the constant gain circles and the center of the

stability circle all lie on a common ray drawn from the center

of the Smith Chart defined by the unit vector &.

Circles of constant available gain, g., are represented from

(23) as

11- s11rS12 - p22 - Ar~12 =
(1- lr./)

9a “

Substitution of I17SI = 1, the unit circle, yields

II - sllrsl’ - 1s22- ArS12 = o

showing that the solution is independent of ga, and hence the

gain circle intersects the unit circle at the same point regardless

of the gain, and consequently are referred to as invariant

points. Also, this equation is the same as (18) implying that the

invariant points are identical to points where the stability circle

intersects the unit circle, i.e., I’;. Because of the invariant

points, the geometric relationship of the source stability circle,

gain circles and the unit circle can be determined solely by

the center as shown in Fig. 3.

The behavior of the gain is now examined as one moves

a distance z along the direction &, i.e., letting 17S = X?,S.

Substitution into (23) yields

l–x’
9.($) = ~1# — Zlcl\z’ + J3 “

Differentiation of this expression yields

(26)
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0 <ga,l <ga,2 ~ga,3 < +IX

Fig. 3.
DI >

Illustration of invariant points 17~ for a circuit where Ikl < 1 and

o.

Since the denominator is always positive the sign of the

derivative is controlled by the numerator. The function, ga,

is monotonic (always increasing or always decreasing) when

the numerator does not change sign as a function of z, This

is equivalent to saying that the discriminant of the numerator,

a quadratic, is negative, i.e.

4(DI +171)2 – 161C112 <0

which is the same as (17), and therefore, equivalent to Ikl <

1. Consequently, the gain function is a monotonic function of

z whenever Ik I < 1.

The gain function g. in (23) is singular (&co) whenever I?s

approaches a value on a stability curve since the denominator

vanishes in (18). The sign of the singularity is determined by

examine the numerator and denominator of (23). As long as

rs remains in the Unit Smith Chart the numerator is positive,

and as long as 17S is in the stable region the denominator is

positive. This positive monotonic nature of g. is illustrated in

Fig. 3 for D1 > 0. The gain is zero at the boundary of the

USC and approaches +co as the stability circle is approached

on the stable side, i.e., the “tick mark” side.

V. INPUT STABLE REGION IN THE SOURCE PLANE

The input stable region in the source plane is determined by
/l’l~(l’~uT(r~)) I <1. Substitution of (3) and (1) results in

(~1 - C;r;l > ICI - Dlr;l. (27)

Squaring and expanding (27) results in

(lc112- @lrS12 + (DI - ~l)clrs

+ (DI – ~l)cyr; > IC112 – E: (28)

which describes a disk or disk complement region in the 17S-

plane depending on whether IC112 – D? <0 or ICI /2 – D? >

0, respectively. In either case the boundary of the region is

described by the equation

(KA12- Di)lrs12 + (DI - E,)C,rs

+ (Dl –E1)C[r; = IC112–E; (29)

which is a circle with center

f& = cls&

where

and with radius

1s,2s2,1
TIS =

2kD1 + 1S12S211

k.MSG

(30a)

(30b)

The subscript “IS” signifies that the area of interest is the Input

stability region in the source plane.

Noticing that C1s is co-linear with the centers of the

available gain circles, Cg~, (line determined by the unit vector

?s) motivates an examination of whether the input stable circle

intersects the unit circle. Substitution of II’S / = 1 into (29)

results in (19) and shows that the input stable circle in the

source plane intersects the unit circle at exactly the invariant

points and hence the input stable boundary in the source plane

is an available gain circle [7].

The specific gain value equating to the input stable boundzuy

is denoted gi~ signifying that it is the specific available gain

circle which determines the input stable region in the ~ource

plane. The value of gi~ can be found by equating (24) with

(30a) resulting in

2k

‘is = IS,2S21

The denormalized gain equals

GIs=2.1c. g =2

where MSG is the maximum stable gain of the device.

The gi~ available gain circle determines the boundary for the

input stable region in the source plane, i.e. lrIi..J (r~u~ (rS)) I

< 1. However, it remains to determine when and if gi,
represents an upper bound for the available gain.

VI. MAXIMUM AVAILABLE Gm (FOR PASSIVE

JOINTLY STABLE SOURCE IMPEDANCES)

In this section it is shown that when the source impedance is

required to be passive and jointly input/output stable then the

available gain has an upper bound referred to as the maximum

jointly stable available gain. This requires examining the

geometrical relationship of the gi~ circle (input stable region

boundary in the source plane), the unit circle (I17SI =1), the
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TABLE I
COMBINATION OF STABILmY REGIONS IN THE r,s-pLANS FOR /kl <1

output Input Stable Implied Implied Does

Case Stable Region Relationship Flg

(D) (lc’,/’-D)’) va!”es

Pawve

Region of centers # Jointly

1 Stable

Region

Exmt?

k>O O<c,. <c, 4 Yes

I Outside Outside

(> o) (> o)

k<O c,~<o<c~ 5 No

II Outside Inside k<O o<c$<c,~ 6 No

(> 0) (<0)

111 Inside Inside k>o c,~<c~<o 7 Yes

(<0) (<0)

k>O c~<o<cr~ 8 Yes

Iv Inside Outside

(<o) (> o)

k<O c~<cr~<o 9 No

source stability circle (output stable region boundary in the

source plane) and the resulting implication of the monotonic

and singular nature of the gain. The geometry of the circles

is determined by the centers since they all intersect at the

invariant points. The passive, output stable, and input stable

regions in the source plane are

Passive Source region [II’s I < 1]

Output Stable region [ll’oUT(r~) I < 1]

DI >0: stable region is outside the source stability circle

D1 <0: stable region is inside the source stability circle

Input Stable region [lrIN(rbUT(rS)) I <11

ICI 12– D? >0: stable region is outside the gis circle

ICI 12– D? <0: stable region is inside the gis circle.

Combinations of the possible stable regions above results

in four cases to consider. Case I is analyzed in detail below,

while the remaining cases are summarized in Table I.

Case 1.’ Ill >0 and IC’112 – D; >0.

Substitution of (10) and (11) results in

Ic,lz -D;= 1s12s211(1s12s211 + 21W1) >0

which implies that

~ > _ 1s,2s2,1

2D1 “

Fig. 4. Case I geometry (DI >0 and ICI [2 –

1 implies O < G1s < Cs.

D~>O)when O<k<

If k is positive then

and from (13) and (30a)

O<CIS<CS

which shows the relationship of the scalar multipliers used

with the unit vector 2S to determine the centers of the circles.

This is illustrated in Fig. 4 where the stable side of the scurce

stability circle is indicated by tick marks. The input stability

boundary (gi~) in the source plane is illustrated as a dark circle

with the stable side designated by triangular tabs. The shaded

area shows the passive, jointly stable impedances in the sclurce

plane (drawing conventions apply to all figures in this section).

Since D1 > 0 the available gain function is increasing as

rs moves along the line defined by the vector 2,s. From the

discussion connected with Fig, 3, the gain equals zero when

rs is located at the boundary of the USC and goes to +CC as it

approaches the stability circle on the tick mark side. Therefore,

in this case with k > 0, the available gain for passive, jclintly

stable source impedances is bounded by G1s.

When k = O, the input stable boundary in the source plane

becomes the same as the unit circle as can be seen by taking

the limit as k approaches zero in (30a) and (30b). However,

the input stable region is outside the circle and therefore it is

impossible to have a passive source impedance which is also

jointly stable.

When k < 0 then O < cls < cs and no passive jclintly

stable source impedances are possible as illustrated in Fig. 5.

After all possible topological combinations of passive and

jointly stable regions in the source plane have been similarly

examined (see Table I) and it is observed that when O < k <
1 then the jointly stable region overlaps with the USC. Source

impedances in the overlapping region result in an output whose

conjugate match is located on the stable side of the load

stability circle. The available gain value, G1s, represents an

upper bound for passive, jointly stable source impedances.

When – 1 < k <0 no passive source impedance are possible



1572 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 43, NO. 7. JULY 1995

c1s

Fig. 5. Case I geometry (D1 > Oand IC’112 –D? >0 ) when –1 < k ~
O implies cIs ~ O < c.s.

Fig. 7. Case III geometry (DI <0 and ICI Iz – D? <0 ) implies O < k <

laadqs<cs <o.

Fig. 6. Case II geometry (Dl > 0 and ICI [2 – D? < 0 ) implies

–l<k<Oand O<cS<cls.

that are jointly stable in the source plane. Therefore, provided

that O < k < 1 the maximum available gain for jointly stable

source impedances equals G1s = 2.k. MSG.

VII. MAXIMUM OPERATING GAIN (FOR

PASSIVE JOINTLY STABLE LOAD IMPEDANCES)

The above development has concentrated on conditionally
stable circuits with the output conjugately matched and /k I <

1. Similarly, a conditionally stable circuit can be designed with

the input conjugately matched. In this case the load impedance

determines whether the circuit is input stable

lrl~(r~)l < I

or output stable,

lrou~(r;~(r~))l < I.

In this case analogous definitions and relationships for (6)

through (13) exist and can be used to establish that output

Fig. 8. Case IV geomet~ (DI <0 and ICI 12 – D~ >0 ) when O < k <

1 implies cs < t) < cls.

stable region in the load plane is bounded by an operating

gain circle with center Co~ = CoLtL where

]Czl
COL =

~2 I 1.%2s,,1
Zk

A c;

CL=%

and radius

[s,2s2,1
?_oJj =

21%D2+ 1S12S211“

The output stable region in the load plane is inside the circle

if IC’z/2 – D; <0 if and outside if IC212 – D; > 0. The value

of the normalized gain is

2k

’01 = /s,2s2,1
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Fig. 9. Case IV geometry (DI <0 and IC’112–D; >0 ) when –1 < k <
0 implies C.S < qs ~ O.

with an denormalized gain equal to

GO= =g01[S2112 =2. k. MSG.

It also follows that passive, jointly stable load impedances exist

if and only if O < k < 1 and the operating gain is bounded

by GOL,

VIII. MAXIMUM SINGLE-SIDED MATCHED Gi%m

(FOR PASSIVE JOINTLY STABLE IMPEDANCES)

Since the maximum available gain for passive, jointly

stable source impedances equals the maximum operating gain

for passive, jointly stable load impedances, a universal fig-

ure of merit can be defined and designated as Maximum

~ingle-Sided Matched Gain, GMsM, for conditionally stable

amplifier. And, for which

GMSM = G1s = GOL = 2. i%. MSG.

In particular, GMsM > GMSG if k > ~

IX. DESIGN EXAMPLE

This section illustrates the use of the above principles in

the design of a conditionally stable 6 GHz amplifier using the

Mitsubishi MGF-4301A HEMT with a conjugately matched

output. The design is based on measured S-parameters for 37

devices biased at VDs = 2 V, ~Ds = 20 mA and summarized

in Table II. Using the mean values from Table II one finds that

k = .732, GMsG = 17.2 dB, and GMsM = 18.9 dB.

The design begins by selecting a source stability margin

measured by an acceptable reduction of available gain. For
each device, an input matching point is selected to insure

that the available gain is 2 dB below its GMsM. This point

is determined for each transistor by selecting 17s on the line

connecting the center of the Smith Chart and the gain circles

so that each 17s is at a maximum distance from their respective

MSM circles. The rs for a desired available gain can be found

TABLE It
STATISTICAL SUMMARY FOR S-PARAMETERS MEASORSMSNT

OF 37 MITSUBISHI MGF-4301A MESFET’S, AT 6 GHz

Average Standmd Deviation
MGF-
4301

A Real Imag Real Imag
Part Part Part Part

s11 -406 -554 016 017

s21 1,45 3,93 ,089 ,098

s12 076 021 003 001

s22 092 -409 021 008

Stabilitv Chcles

“ /152!E!4GA =16.9 dB(mean)h2dB (std)
L.21

Fig. 10. Sonrce stability circles, MSM circles, arid the average input match-

ing point for the 37 transistors at 6 GHz.

by inverting (26) using the negative root in the quadratic

formula

Ic,]ga - /p, [2g: - (gaDl + 1)(9.E1 - 1)
x:

(gaD, + 1)

and substituting into

rs=x.;s

where ga from (22) now equates to the reduced gain for each

device.

The average of the 37 17S’s together with the source stability

circles, and the MSM circles, calculated using (12a), (“12b),

(24), (25), (30a), and (30b) are shown in Fig. 10. A single [MN
matched to the average I’S was designed using the HP-EEsof

commercial CAD system.

A set of output reflection coefficients is subsequently ob-

tained by connecting the same IMN to each of the transistors.

Averaging the conjugate of this set determines the matched

load reflection coefficient, see Fig. 11. and is used to design

the OMN.

With the IMN and OMN designed, transducer gain of the
amplifier can be simulated using the S-parameters of each

device. A plot of these transducer gains is shown over a

frequency range of 4-8 GHz in Fig. 12. The black band

resulting from multiple traces indicates the variation of gain

over the 37 samples. The average transducer gain at the 6 GHz

design frequency is 16.7 dB (mean) +0.2 (std).
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Fig. 11. Load stability circles and the average conjugately matched load for

the 37 transistors at 6 GHz.

18

16

14

12

s
~ 10

c.- 8

36

4

2

4 4.5 5 5.5 6 6.5 7 7.5 6

Frequency (GHz)

Fig. 12. Simulated and measured (A) gain for an output matched condition-
ally stable amplifier usiug the Mitsubishi MGF-4301 A transistors.

The above design was fabricated and transistors installed.

The measured gain of four output matched amplifiers are

shown in Fig. 12. The average gain of the four amplifiers

measured at 6 GHz is 15.9 dB.

The advantage of pursuing a conditionally stable design

technique is illustrated by comparison with the expected

performance of an unconditionally stable amplifier design

using the same transistor set. The expected MAG can be

estimated as MSG – 2.7 – .5 = 14.0 dB, where t!!e 2.7 dB

reduction accounts for resistive loading to achieve k x 1.2

and the .5 dB reduction accounts for typical matching network

losses. A design k of 1.2 was assumed here to provide design

margin so that actual circuit k’s will be maintained greater

than one under worst-case component and process variations.

On the basis of similar design margins and circuit losses, the
6.7 dB gain of the conditionally stable design is 2.7 dB higher

than the 14-dB gain of the unconditionally stable design. Even

the measured gain of the conditionally stable amplifier design

(Fig. 12) is nearly 2 dB better than the design estimate of the

unconditionally stable amplifier. This improvement is achieved

without the side effects of resistive loading such as increased

noise figure.

The gain improvement was possible because some in-

stability risk was permitted to be part of the design. A

quantitative margin of safety is, therefore, important and must

be considered for a wide frequency range even in a narrow

band design. Plotting the circuit k and B1 values as a function

o~
4 4.5 5 5.5 6 6,5 7 7.5 6

Frequency (GHz)

Fig. 13. Stability margin determined by p‘ and p.

of frequency is not very satisfying since it does not directly

translate into VSWR restrictions on the source or load to insure

stable operation. However, the new source and load stability

parameter p’ and ~ [3] which measures the encroachment of

the unstable area onto the USC does provide the necessary

source and load VSWR condition. Fig. 13 shows ~’ and p

plotted for the four fabricated amplifiers over a frequency

range of 4–8 GHz. The stability margin is determined on the

source side by ~’ and on the load side by ~. The lowest values

determine the least margin of stability. For example at 5.5 GHz

# = 0.75 which equates to a VSWR of (1+.75)/(1 –.75) = 7.0

meaning that the circuit remains stable even when connected

to a source having a high VSWR of 7.0:1. At 5.3 GHz K =

0.42 implies that stable operation is insured for a load whose

VSWR does not exceed 2.4:1.

The above techniques naturally lend themselves to modern,

commercially available CAD packages which easily incorpo-

rate user defined variables and equations and the relationships

can greatly accelerate optimization and provide valuable en-

gineering insight into the design.

X. CONCLUSION

A deterministic approach has been developed for design-

ing conditionally stable amplifiers whose input or output is

matched. A rigorous theoretical framework for this approach

has been established and two gain circles have been defined,

namely the Maximum Available Gain for passive, jointly stable
source impedances and the Maximum Operating Gain for

passive, jointly stable load impedances. Each circle serves as

a graphical design aid on the Smith Chart as the boundary

for suitable source or load regions under the proposed design

method. The boundary of both regions coincides with a

particular gain circle in their respective impedance plane and

the associated gain of each circle is found to be equal to

2 k . MSG. This gain is designated as GMsM (Maximum

Single-sided Matched Gain).
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